Dynamics of the round sensing element of a nanoelectromechanical sensor

Статья подготовлена сотрудниками: д.ф.-м.н Барулина М.А..
на базе: Лаборатория анализа и синтеза динамических систем в прецизионной механике.


Анотация

The theory of nonlinear dynamics of the circular sensing element of a nanoelectromechanical sensor in the form of flexible elastic axisymmetric nano plates is constructed. The developed theory is general. It is based on the kinematic model of the third approximation (Sheremetev-Pelekh-Reddy). Two other theories follow from it as a special case: the theory of nonlinear dynamics and flexible nano-plates, obtained on the basis of the kinematic model of the first approximation (Kirchhoff), the second approximation (Timoshenko). The general theory obtained follows from the variational principle of Hamilton. For each of the kinematic hypotheses, a system of nonlinear partial differential equations is obtained. Obtaining a “true” solution is guaranteed using the methodology outlined in [1]. As an example, the model of the first approximation of the nonlinear dynamics of flexible elastic axisymmetric nano-plates is studied. In a numerical experiment, the required equations are solved by different methods, their convergence is investigated. It is shown that taking into account the size-dependent parameter significantly affects the character of plate oscillation and changes their character.

Ключевые слова: Mathematical model , Strain , Tensile stress , Nonlinear dynamical systems , Vibrations , Nanoelectromechanical systems

DOI 10.23919/ICINS.2018.8405901

Ссылка на статью

Цитировать эту статью:

Barulina M.A., Papkova I.V., Krysko A.V. DYNAMICS OF THE ROUND SENSING ELEMENT OF A NANOELECTROMECHANICAL SENSOR // В сборнике: 25th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2018 - Proceedings 25. 2018. С. 1-4. Scopus DOI: 10.23919/ICINS.2018.8405901

О журнале 25th Anniversary Saint Petersburg International Conference on Integrated Navigation Systems