доктор физико-математических наук, профессор Челноков Ю.Н.
Основные направления и результаты научных исследований
- Кватернионные и бикватернионные модели и методы механики твердого тела, систем твердых тел и роботов-манипуляторов
- Инерциальная ориентация, навигация и нелинейное инерциальное управление движением объектов на бесплатформенных принципа
- Оптимальное управление угловым и орбитальным движениями космических аппаратов с использованием кватернионных моделей астродинамики
- Методы синтеза многосвязных систем автоматического управления по критериям точности и робастной устойчивости
- Алгоритмическое обеспечение систем навигации и управления движением объектов различного назначения
В рамках данных направлений:
- Разработаны новые кватернионные и бикватернионные модели и методы механики твердого тела и их систем, даны их приложения к исследованию движения твердого тела и гироскопических систем и установлению свойств их движения в нелинейной постановке
- Получено обобщение теоремы Гамильтона-Ишлинского о телесном угле на неголономное пространственное движение твердого тела, имеющее важные приложения в инерциальной навигации и управлении движением
- Предложен кватернионный метод регуляризации дифференциальных уравнений движения небесных и космических тел, имеющий ряд качественных преимуществ перед классическими регуляризациями Эйлера-Леви-Чивита и Кустаанхеймо-Штифеля; получены новые кватернионные регулярные дифференциальные уравнения возмущенной пространственной задачи двух тел и возмущенной пространственной ограниченной задачи трех тел
- Разработаны новые регулярные кватернионные модели механики космического полета, с их помощью решен ряд актуальных нелинейных пространственных задач оптимального управления траекторным движением космических аппаратов
- Предложена новая концепция теории устойчивости и управления движением твердого тела, основанная на фундаментальных теоремах теоретической механики – теоремах Эйлера-Даламбера и Шаля и новых дифференциальных уравнениях возмущенного движения
- Разработаны методы аналитического построения нелинейных управлений вращательным (угловым) движением твердого тела и космического аппарата (КА), гарантирующих асимптотическую устойчивость в большом или в целом любого выбранного программного углового движения и желаемую динамику управляемого углового движения твердого тела и космического аппарата, построены алгоритмы такого управления
- Построены новые кватернионные и бикватернионные уравнения и алгоритмы пространственной инерциальной навигации, в том числе регулярные кватернионные уравнения космической инерциальной навигации, а также новые уравнения и алгоритмы функционирования бесплатформенных инерциальных навигационных систем, реализованные в современных системах навигации на волоконно-оптических и лазерных гироскопах
- Предложен новый бикватернионный метод решения прямых задач кинематики роботов-манипуляторов, а также новый метод решения обратных задач кинематики роботов-манипуляторов, использующий бикватернионную теорию кинематического управления движением твердого тела
- Разработаны модели и алгоритмы управления движением уникального орбитального платформенного комплекса «Манипулятор – трехосная гиростабилизированная платформа» космического проекта «Марс-94»
- Предложены новые классы аналитических решений в задачах оптимальной переориентации твёрдого тела (КА) для различных функционалов качества переходных процессов
Получены аналитические решения задач оптимальных разворотов КА снабжённых импульсными двигателями ориентации, реализующие двухимпульсные схемы управления; данные решения справедливы при произвольных граничных условиях по угловому положению и угловой скорости КА - Исследованы особые режимы управления в задачах оптимальных разворотов сферически-симметричного, осесимметричного и произвольного твёрдого тела (КА) при произвольных граничных условиях задач
- Получено аналитическое решение модифицированной задачи оптимального разворота КА в классе обобщенных конических движений, которое может рассматриваться как приближенное решение классической задачи оптимального разворота КА при произвольных граничных условиях и произвольной динамической конфигурации КА
- Разработаны аналитические методы синтеза регуляторов многомерных систем управления с учетом требований точности при постоянных или случайных возмущениях и требований грубости (робастной устойчивости) замкнутой системы к возможным неопределенностям модели объекта
- Даны оценки предельной статической точности дискретных систем с регуляторами по состоянию и по измеряемому выходу
- Предложен новый класс дискретных регуляторов с наблюдателями минимального порядка и максимального быстродействия, основанный на приведении объекта управления к канонической форме
- Дано новое решение регулярных и сингулярных задач Н∞-оптимизации с использованием наблюдателей полного порядка и минимальной размерности, основанное на принципе разделения
За период 1997-2015 гг. опубликовано свыше 130 научных работ, в том числе более 60 крупных научных статей в журналах «Известия РАН. Механика твердого тела», «Космические исследования», «Известия РАН. Теория и системы управления», «Гироскопия и навигация», «Автоматика и телемеханика».
Результаты деятельности
Проект в области авиационной и ракетно-космической техники:
“Разработка теории и алгоритмов инерциальной навигации и управления движением летательных аппаратов на основе кватернионов Гамильтона и бикватернионов Клиффорда” (1993-1995 гг.).
Проект по программе “Государственная поддержка интеграции высшего образования и фундаментальных наук на 1997-2000 гг.”:
“Поддержка и развитие учебно-научного центра по проблемам механики Саратовского научно-образовательного комплекса в области фундаментальных наук”, раздел “Динамика, устойчивость и управление движением твердого тела”.
Семь трёхгодичных проектов (1993-2014 гг.), поддержанных Российским фондом фундаментальных исследований:
“Разработка кватернионных и бикватернионных моделей, методов и алгоритмов решения задач механики, навигации и управления движением” (1993-1995 гг., проект № 93-01-17479),
“Кватернионные модели и методы теории управления движением космических аппаратов” (1996-1998 гг., проект № 96-01-01251),
“Развитие кватернионных моделей и методов механики космического полета” (1999-2001 гг., проект № 99-01-00192),
“Кватернионные модели и методы в пространственных нелинейных задачах оптимального управления движением космических аппаратов” (2002–2004 гг., проект № 02-01-00988),
“Кватернионные модели и методы динамики и управления движением космических аппаратов” (2005–2007 гг., проект № 05-01-00-347),
“Управление движением в космосе с использованием кватернионов” (2008–2010 гг., проект № 08-01-00-310),
“Исследование проблем механики управляемого движения с использованием кватернионных и бикватернионных моделей и методов” (2012–2014 гг., проект № 12-01-00165).
Двухгодичный проект в рамках научной программы “Университеты России – Фундаментальные исследования”:
“Разработка аналитических и численных методов решения задач оптимального управления пространственным движением космических аппаратов, использующих кватернионные переменные”, выполненный (2000-2001 гг.).
Три издательских проекта, выполненных при поддержке Российского фонда фундаментальных исследований:
Издание монографии “Кватернионные и бикватернионные модели и методы механики твердого тела и их приложения. Геометрия и кинематика движения” (2005–2006 гг., проект № 05-01-14038-д),
Издание монографии “Кватернионные модели и методы динамики, навигации и управления движением” (2009-2010 гг., проект № 09-01-07022-д),
Издание монографии “Кватернионные модели и методы динамики, навигации и управления движением” (2009 г., проект № 09-01-02002-э_д).
Прикладные НИР, выполненные в рамках Государственного космического проекта “Марс-94” (1990-1996 гг.) по заказам Всероссийского НИИ транспортного машиностроения (г. С.-Петербург) и Института космических исследований РАН (г. Москва)
Прикладные исследования по разработке теории, алгоритмов и программно-математического обеспечения функционирования бесплатформенных инерциальных навигационных систем, предназначенных для решения задач ориентации и навигации летательных и других аппаратов в географической и ортодромической системах координат по заказам Конструкторского бюро промышленной автоматики (г. Саратов, 1984-1990 гг.), ООО НПК “Оптолинк” (г. Москва (Зеленоград), 2006-2009 гг.), ОАО «Концерн «Авионика» (г. Москва, 2011 г.), ООО «Аэроспецпроект» (г. Жуковский Московской области, 2012-2013 гг.).
Сотрудниками лаборатории разработано математическое, алгоритмическое и программное обеспечение БИНС, предназначенной для высокоточного решения задач инерциальной ориентации и навигации объекта в инерциальной или географической опорной системе координат в автономном и корректируемом режимах. Предполагается, что БИНС имеет в своем составе три акселерометра, измерители проекций абсолютной угловой скорости объекта, датчики высоты и вертикальной скорости (в корректируемом режиме) и бортовой вычислитель (БЦВМ).
Разработаны новые высокоточные алгоритмы определения параметров ориентации объекта в инерциальной и географической системах координат (параметров Родрига-Гамильтона (Эйлера), углов курса, рыскания, тангажа и крена); проекций относительной, кажущейся и гравитационной скоростей, а также географических координат местоположения объекта (высоты, долготы и широты). Алгоритмы могут использовать или мгновенную первичную информацию о движении объекта (проекции векторов абсолютной угловой скорости и кажущегося ускорения объекта на связанные с ним координатные оси), или интегральную первичную информацию о движении объекта (приращения интегралов от проекций векторов абсолютной угловой скорости и кажущегося ускорения объекта). Для разработки алгоритмов использованы новые уравнения инерциальной ориентации и навигации, построенные сотрудниками лаборатории, а также применен новый эффективный математический аппарат, использующий кватернионы Гамильтона и бикватернионы Клиффорда.
Разработанные алгоритмы ориентации БИНС имеют методические погрешности, равные 10-8 ÷10-5 град/час, а навигационные алгоритмы имеют в автономном режиме через час движения методические погрешности, равные 10-5 ÷10-3 м/с по скорости, и 10-3 ÷4 м по местоположению (по вертикальному каналу эти погрешности на 1-2 порядка больше) в зависимости от параметров вращательного (углового) и траекторного (поступательного) движений объекта и порядка точности используемых алгоритмов.
Рассмотрены основные принципы построения корректируемой по высоте и вертикальной скорости БИНС, предложены различные подходы к синтезу алгоритмов коррекции как для непрерывного, так и для дискретного вариантов. Разработан метод синтеза корректирующей обратной связи (в непрерывном и дискретном вариантах) с учетом помех в измерительной информации о высоте и вертикальной скорости с дополнительным требованием астатизма, необходимого для устранения постоянных составляющих ошибок вертикального канала. Проведено моделирование работы корректируемой БИНС с различными вариантами коррекции как без учета помех измерителей (гироскопов, акселерометров, датчиков высоты и вертикальной скорости), так и с учетом этих помех.
Ряд разработок по БИНС выполнен по заказам Конструкторского бюро промышленной автоматики (г. Саратов, 1984-1990 гг.), ООО НПК “Оптолинк” (г. Москва (Зеленоград), 2006-2009 гг.), ОАО «Концерн «Авионика» (г. Москва, 2011 г.), ООО «Аэроспецпроект» (г. Жуковский Московской области, 2012-2013 гг.).
Математические модели движения уникального космического комплекса, состоящего из трехзвенного манипулятора и трехосной гиростабилизированной платформы в обращенном торсионном кардановом подвесе, установленной на выходном звене манипулятора (главный конструктор комплекса Г.А. Пейсахович); теория и алгоритмы управления движением комплекса, программно-математическое обеспечение для моделирования движения комплекса и отработки законов и алгоритмов управления его движением (Государственный космический проект “Марс-94” (1990-1996 гг.))
- Новые высокоэффективные алгоритмы и программы численного решения нелинейных пространственных краевых задач оптимального управления движением космических аппаратов, реализующие достоинства кватернионных моделей астродинамики
- Математическое и алгоритмическое обеспечение бесплатформенных систем ориентации и навигации движущихся объектов в инерциальной, географической и ортодромической системах координат
“Кватернионное построение оптимальных управлений и траекторий космических аппаратов” (ГР № 01.960.0 04385, 1996-1997гг.),
“Анализ и синтез законов управления движением в ньютоновском гравитационном поле на основе кватернионных методов механики и методов пространства состояний” (ГР № 01.9.80 0 02098, 1998 — 2000 гг.),
“Разработка теории управления движением на основе кватернионных и бикватернионных методов механики твердого тела и методов пространства состояний и ее приложение к управлению движением космических аппаратов и роботов-манипуляторов” (ГР № 01.2.00 102218, 2001-2003 гг.),
“Разработка кватернионных и бикватернионных моделей и методов механики твердого тела, методов пространства состояний в задачах динамики и управления движением” (ГР № 0120.0 403260, 2004-2006 гг.),
“Кватернионные модели и методы динамики, навигации и управления движением” (ГР № 01.2.007 02554, 2007-2009 гг.),
“Кватернионные модели и методы в задачах механики, навигации и управления движением” (ГР № 01201000279, 2010-
2012 гг.),
“Исследование проблем механики, навигации и управления движением с использованием кватернионных и бикватернионных моделей и методов пространства состояний” (ГР № 01201352213, 2013-2015 гг.)